4 research outputs found

    Ultrasound medical image deconvolution using CLEAN algorithm

    Get PDF
    International audienceThe problem of reconstruction of ultrasound medical images using blind deconvolution algorithm has been recognized as one of the most important aspect in ultrasound images. The image resolution is deteriorated by many parameters such as the diffusive effect in tissues, which produce the speckle noise. We intend to implement a nonlinear algorithm based on joint use of the well known CLEAN method and the Hybrid Parametric Inverse Filtering method. This method suppose an iterative process for extracting the brightness small objects presents in the image using a dirty beam Point Spread Function. The PSF is obtained with HYPIF algorithm, a blind technique for ultrasound medical images. The technique is applied for the 1D signals extracted from RF ultrasound images (simulated and experimental). The results are compared with Wiener filter

    Sparse blind deconvolution in ultrasound imaging using an adaptative CLEAN algorithm

    No full text
    L'imagerie mĂ©dicale ultrasonore est une modalitĂ© en perpĂ©tuelle Ă©volution et notamment en post-traitement oĂč il s'agit d'amĂ©liorer la rĂ©solution et le contraste des images. Ces amĂ©liorations devraient alors aider le mĂ©decin Ă  mieux distinguer les tissus examinĂ©s amĂ©liorant ainsi le diagnostic mĂ©dical. Il existe dĂ©jĂ  une large palette de techniques "hardware" et "software". Dans ce travail nous nous sommes focalisĂ©s sur la mise en oeuvre de techniques dites de "dĂ©convolution aveugle", ces techniques temporelles utilisant l'enveloppe du signal comme information de base. Elles sont capables de reconstruire des images parcimonieuses, c'est-Ă -dire des images de diffuseurs dĂ©pourvues de bruit spĂ©culaire. Les principales Ă©tapes de ce type de mĂ©thodes consistent en i) l'estimation aveugle de la fonction d'Ă©talement du point (PSF), ii) l'estimation des diffuseurs en supposant l'environnement explorĂ© parcimonieux et iii) la reconstruction d'images par reconvolution avec une PSF "idĂ©ale". La mĂ©thode proposĂ©e a Ă©tĂ© comparĂ©e avec des techniques faisant rĂ©fĂ©rence dans le domaine de l'imagerie mĂ©dicale en utilisant des signaux synthĂ©tiques, des sĂ©quences ultrasonores rĂ©elles (1D) et images ultrasonores (2D) ayant des statistiques diffĂ©rentes. La mĂ©thode, qui offre un temps d'exĂ©cution trĂšs rĂ©duit par rapport aux techniques concurrentes, est adaptĂ©e pour les images prĂ©sentant une quantitĂ© rĂ©duite ou moyenne des diffuseurs.The ultrasonic imaging knows a continuous advance in the aspect of increasing the resolution for helping physicians to better observe and distinguish the examined tissues. There is already a large range of techniques to get the best results. It can be found also hardware or signal processing techniques. This work was focused on the post-processing techniques of blind deconvolution in ultrasound imaging and it was implemented an algorithm that works in the time domain and uses the envelope signal as input information for it. It is a blind deconvolution technique that is able to reconstruct reflectors and eliminate the diffusive speckle noise. The main steps are: the estimation of the point spread function (PSF) in a blind way, the estimation of reflectors using the assumption of sparsity for the examined environment and the reconstruction of the image by reconvolving the sparse tissue with an ideal PSF. The proposed method was tested in comparison with some classical techniques in medical imaging reconstruction using synthetic signals, real ultrasound sequences (1D) and ultrasound images (2D) and also using two types of statistically different images. The method is suitable for images that represent tissue with a reduced amount or average scatters. Also, the technique offers a lower execution time than direct competitors

    DĂ©convolution aveugle parcimonieuse en imagerie Ă©chographique avec un algorithme CLEAN adaptatif

    No full text
    The ultrasonic imaging knows a continuous advance in the aspect of increasing the resolution for helping physicians to better observe and distinguish the examined tissues. There is already a large range of techniques to get the best results. It can be found also hardware or signal processing techniques. This work was focused on the post-processing techniques of blind deconvolution in ultrasound imaging and it was implemented an algorithm that works in the time domain and uses the envelope signal as input information for it. It is a blind deconvolution technique that is able to reconstruct reflectors and eliminate the diffusive speckle noise. The main steps are: the estimation of the point spread function (PSF) in a blind way, the estimation of reflectors using the assumption of sparsity for the examined environment and the reconstruction of the image by reconvolving the sparse tissue with an ideal PSF. The proposed method was tested in comparison with some classical techniques in medical imaging reconstruction using synthetic signals, real ultrasound sequences (1D) and ultrasound images (2D) and also using two types of statistically different images. The method is suitable for images that represent tissue with a reduced amount or average scatters. Also, the technique offers a lower execution time than direct competitors.L'imagerie mĂ©dicale ultrasonore est une modalitĂ© en perpĂ©tuelle Ă©volution et notamment en post-traitement oĂč il s'agit d'amĂ©liorer la rĂ©solution et le contraste des images. Ces amĂ©liorations devraient alors aider le mĂ©decin Ă  mieux distinguer les tissus examinĂ©s amĂ©liorant ainsi le diagnostic mĂ©dical. Il existe dĂ©jĂ  une large palette de techniques "hardware" et "software". Dans ce travail nous nous sommes focalisĂ©s sur la mise en oeuvre de techniques dites de "dĂ©convolution aveugle", ces techniques temporelles utilisant l'enveloppe du signal comme information de base. Elles sont capables de reconstruire des images parcimonieuses, c'est-Ă -dire des images de diffuseurs dĂ©pourvues de bruit spĂ©culaire. Les principales Ă©tapes de ce type de mĂ©thodes consistent en i) l'estimation aveugle de la fonction d'Ă©talement du point (PSF), ii) l'estimation des diffuseurs en supposant l'environnement explorĂ© parcimonieux et iii) la reconstruction d'images par reconvolution avec une PSF "idĂ©ale". La mĂ©thode proposĂ©e a Ă©tĂ© comparĂ©e avec des techniques faisant rĂ©fĂ©rence dans le domaine de l'imagerie mĂ©dicale en utilisant des signaux synthĂ©tiques, des sĂ©quences ultrasonores rĂ©elles (1D) et images ultrasonores (2D) ayant des statistiques diffĂ©rentes. La mĂ©thode, qui offre un temps d'exĂ©cution trĂšs rĂ©duit par rapport aux techniques concurrentes, est adaptĂ©e pour les images prĂ©sentant une quantitĂ© rĂ©duite ou moyenne des diffuseurs

    Blind Deconvolution for Ultrasound Sequences Using a Noninverse Greedy Algorithm

    Get PDF
    The blind deconvolution of ultrasound sequences in medical ultrasound technique is still a major problem despite the efforts made. This paper presents a blind noninverse deconvolution algorithm to eliminate the blurring effect, using the envelope of the acquired radio-frequency sequences and a priori Laplacian distribution for deconvolved signal. The algorithm is executed in two steps. Firstly, the point spread function is automatically estimated from the measured data. Secondly, the data are reconstructed in a nonblind way using proposed algorithm. The algorithm is a nonlinear blind deconvolution which works as a greedy algorithm. The results on simulated signals and real images are compared with different state of the art methods deconvolution. Our method shows good results for scatters detection, speckle noise suppression, and execution time
    corecore